
Lecture 9: External interrupts
Hardware, Internals and Programming of AVR

Microcontrollers in Assembler
by

Gerhard Schmidt
Kastanienallee 20

D-64289 Darmstadt

External interrupts
● All AVRs have pins where external level changes (either low to

high, high to low or both) can generate an interrupt. These pins are
named INTn, with n can be 0, 1 or any other type specific number.

● The type of level change, that generates an interrupt is controlled
via the Interrupt Sense Control bits ISCn1:0. Those are located in
the MCUCR port register or in larger devices with many INTn in a
different port register.

● The external interrupt is enabled by setting the INTn bit in GIMSK.

PC interrupts
● The INTn interrupts are on top of the interrupt vector jump list and

have the highest priority.
● The ATtiny24 has only one external INT pin (PB2, pin 5 of the PDIP

package), INT0.
● If you need more external interrupts: any pin can generate an

interrupt. These interrupts are called PCINTn, in the ATtiny24
PCINT0 to PCINT7 are the interrupts generated on port pins PA and
PCINT8 to PCINT11 on port pins PB.

● If enabled, any level change triggers a PCINT interrupt.
● To enable those external interrupts the respective PCINTn bits

have to be set in the port registers PCMSK0 (PCINT0:7) or PCMSK1
(PCINT8:11). Any number of bits can be set or cleared.

● The interrupts can be enabled by setting the PCIE0 and/or PCIE1 bit
in the GIMSK port register.

PC interrupts, pin identification
● Preferably only one of the PCINT0:7 and PCINT8:11 interrupts is

enabled, so the attribution of the PCINT0 and PCINT1 to the pin is
trivial.

● If more interrupts have to be utilized, the identification which of
the pins has changed its level and triggered the PCINT0 or PCINT1
interrupt can use the Exclusive OR instruction EOR. EORing the
current and the previous state of the port sets all bits that have
changed.
.EQU PcInt0Mask = 0b01010101 ; PA0/PA2/PA4/PA6 can cause the PCINT0
.DEF rPrev = R17 ; Previous port state
.DEF rCurr = R18 ; Current port state
; PCINT0 ISR

IN R15, SREG ; Save SREG
IN rCurr, PINA ; Read current port A state
ANDI rCurr, 255 – PcInt0Mask ; Clear all bits that are not masked
MOV R16, rCurr ; Copy current state
EOR R16, rPrev ; Exclusive OR the previous state

Pin identification, continued

● The subroutines BitNChanged can react specifically on every
changed input pin.

● If the PCINT0/PCINT1 interrupts shall react on pressed keys
connected to the pins, it is sufficient to react on a low level on
these pins. Skip on Bit in I/o Set SBIS can be used, followed by
those RCALLs.

SBRC R16, 0 ; Skip next instruction if bit 0 is clear
RCALL Bit0Changed
SBRC R16, 2 ; Test bit 2 changed
RCALL Bit2Changed
SBRC R16, 4 ; Test bit 4 changed
RCALL Bit4 Changed
SBRC R16, 6 ; Test bit 6 changed
RCALL Bit6Changed
MOV rPrev, rCurr ; Copy current over previous
OUT SREG, R15 ; Restore SREG
RETI ; Return from interrupt

Suppression of key bouncing
● Keys tend to bounce, maybe not when new but after ageing. So it is a

good idea
● to clear and start a timer if one of the keys has been pressed,
● to disable further key reactions within the following 20 or 50 ms,
● to restart the timer by clearing its TCNT port register if another

active key action happens in between,
● to enable key reactions again when the timer reaches its end

point.
● Blocking needs a flag bit here. Use any bit in any register, with Set Bit

in Register SBR and Clear Bit in Register CBR to set and clear this flag.
● If not used for other purposes, the T flag in SREG can be set with SET

and cleared with CLT. Note that saving the SREG in interrupt service
routines overwrites the T flag when restoring its state.

The analog comparer
● One fifth of all AVRs have analog comparers on board. If enabled

(ACD bit in ACSR is one), the analog comparer compares the analog
voltages on the pins AIN1 and AIN0 and set the ACO bit in ACSR
according to the result.

● If the ACIE bit is set, an interrupt can be generated. If the ACS1:0
bits are 0b00 this is done on every level change. The ACS bits can
enable interrupts only on falling edges (0b10) or on rising edges
(0b11).

AIN1

AIN0

ACO bit in ACSR

Serial communication
● Half of the AVR devices have serial communication hardware on

board.
● Two types of serial communication are supported:

● Synchroneous interfaces such as the Two-Wire Interface (TWI)
or I2C, see Universial Serial Communication (USC) in the data
book,

● Asynchroneous interfaces such as Universial Asynchroneous
Receiver and Transmitter (UART).

● All serial interfaces can initiate diverse interrupt types.
● Use avr_sim („Project“, „New“, „Device-selector“) to find all AVR

types that have such serial interfaces by selecting serial pins (SDA0
or UXD0).

Questions and tasks in Lecture 9

Task 9-1: Write a program that follows any changes on the INT0
pin and lights a LED if the input is low.

Bonus question: What has to be changed if the LED lights on the
input high?

Questions and tasks in Lecture 9 - Continued

Task 9-2: Write a program that counts the key bounces on PB0
and display those on four LEDs attached to PA0 to PA3.

Bonus task: Clear the display if the PCINT input pin has been
inactive for longer than five seconds.

Questions and tasks in Lecture 9 - Continued

Task 9-3: Build this hardware
and measure the frequency on
the input with the analog
comparer. If this is between 49
and 51 Hz, light the green LED.

Touch the fIN connector to test
the hard- and software.

ATtiny24

+

GND

VCC

100k 100k

AIN0 AIN1

100k

+

XTAL1 XTAL2 RESET

1
0k

+
18p 18p

4MHz

270 +

PB2

gn

fIN

14

1

100n 470n

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

