
Path: Home => AVR-EN => Applications => Large watch m48

AVR applications

Large watch with
ATmega48
Hardware,

Mounting, Use and
Software for the

large watch

Large watch with ATmega48

1. Properties
2. Hardware
3. Mounting
4. Software

1 Properties
The hardware properties are:

• Four digits with 7 segments each
display hour and minute tens
and ones,

• The seven segments consist of
four 10mm LEDs, 28 LEDs per
digit, very bright,

• two LEDs in the middle blink in seconds,
• Giant: 680-by-240 mm display front, can be read from a large distance,
• Low power consumption: by stacking the LEDs of a segment only 25 mA per seg-

ment or maximum 200 mA per digit (all segments on), multiplexing by four to re-
duce hardware parts,

• Manyfold adjustment of the watch:
1. manually with two keys and a potentiometer,
2. automatically by attaching a DCF77 receiver module,

• Brightness control either via a backlight sensor or via the potentiometer (config-
urable),

• Exact time: xtal controlled clock signal with 4.096 MHz xtal,
• Low overall power consumption: ca. 5 kWh for a whole year,
• Multiple diagnose tools integrated in the source code to identify wiring errors in the

hardware,
• Well-documented free assembler source code, easily modifiable for different config-

urations,
• Free documentation with all source code and all calculation and all design graphics

available,
• Simple re-programming within the running system by integrated ISP6 interface,

therefore fast changes to the configuration possible.

Page 1 of 36

http://www.avr-asm-tutorial.net/index.html
http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html

Page top Properties Hardware Mounting Software

2 Hardware

2.0 Preliminary remarks
When developing this hardware I collected the following experiences, that might be useful
for others:

1. My first approach was to clock the controller directly with a 32.768 kHz crystal.
That turned out to be impracticable for the following reasons. First: it is possible to
clock the controller with that low frequency. My first try was erroneous: I fused the
controller with an external crystal oscillator attached, not with an external crystal
attached (error #1). ATMEL's Studio 4.19 did not recognize the error and returned a
correctly verified setting. I don't know with which clock signal (as there should have
been none) this verification was made, but anyway: a second try to access the fus-
es via ISP failed (of course and as to be expected).
After repairing the error in HV/Parallel mode in an STK500, it didn't work either. I
programmed at the planned 3.3V operating voltage and had set the brown-out-de-
tection to 2.7V (error #2). As a test program I had burned a short sequence, blink-
ing the attached green LED. But: nothing was blinking. Only if I rose the operating
voltage to 5V (of cause without the display LEDs attached), the blinking started.
The reason was that the brown-out detection already reacted on much higher volt-
ages the programmed (up to 4V when set to 2.7V). Only after turning brown-out-
detection off the blinking worked at whatever operating voltage. Therefore: do not
trust ATMEL's brown-out-properties!
For the third error I don't have such an easy work-around: the Studio refused to
program the AVR with clock frequencies smaller than 5 kHz. It was necessary to se-
lect a 4 kHz ISP frequency because the next higher entry was already 57.6 kHz
(which would certainly exceed one quarter of the 32.768 kHz clock = 8.192 kHz).
So 4 kHz was the only alternative but the Studio does not allow to program flash or
EEPROM at below 5 kHz. Even though the handbook on the ATmega48 does not
have any programming frequency limits in ISP mode. So it must be an artificially
set limit of the Studio software. Anyway: producing a rather complex source code
without a working ISP interface is a mess, and I gave up the 32.768 kHz clock idea
at that point. I have been wondering if the project would really work at that clock,
and unfortunately had already took some efforts to optimize execution times at that
time.

2. I had planned to avoid the 16 diodes for the constant-current transistors, that usu-
ally are necessary to limit the base voltage of the transistors, by reducing the oper-
ating voltage of the controller down to 3.3 V, so that the emitter voltages would go
down to (3.3 - 0.6) = 2.7 V. With a 100Ω resistor the constant current would be
27 mA, ideal for the LEDs in multiplex mode.
Usually one uses an Integrated Circuit regulator. Unfortunately 3.3 V regulators
come only in SMD. Anyway, I tried a BA033FB, and soldered the three pins with
some short wires. Unfortunately my operating voltage was not at 3.3 V but at more
than 20 V. Fortunately I had the supply part not attached to the controller at that
time, my ATmega48 and some of the transistors would have died that way.
In those parts the ground pin is not attached to the middle pin (like their datasheet
says - and lies about that) but only to the cooling pad. But connecting the cooling
pad with minus did reveal error #4: the voltage on the output pin of the BA033FB
was not around 3.3 V, but at 4.04 V instead. By that even exceeding the upper limit

Page 2 of 36

listed in the data sheet by far. That would have blown my LEDs with a by far too
large current. At how many mA's will the specified voltage be reached? I don't know
but rather fast decided to not use an Integrated regulator, because the next lower
regulator, a 78L02, has a specified lowest voltage below the lower limit where an
ATmega48 is reliably running (2.7 V). And constructed and build my own regulator
with a zener diode and a transistor.

3. The transformer that I had calculated in advance would be a 2.8VA 2*12V type and
would have fitted exactly my needs. But the one that was delivered (with 2*12V
written on top) was a 2*15V type instead (error #5). The extra voltage nearly blew
up my electrolytic capacitor as it produced 27 V at zero load (without consuming
current). So I had to build in a small yellow LED to bring the no load voltage down
to 25 V.
The power of the transformer was really 2.8VA, but the higher voltage caused a
smaller current than calculated (error #6). An attached 82Ω as load, usually con-
suming 200 mA (well below the specified 2*117 = 234 mA), brought the voltage to
well below my LED consumption voltage of 13 V: a 2.8VA transformer with 2*15V
only delivers 187 mA. So I had to reduce the LED's current consumption by reduc-
ing the operating voltage of the controller down to 2.7 V instead of the planned
3.3 V. Just to work around the false transformer. Fortunately the brightness of the
LEDs is not very different between 27 and 21 mA.

4. Normally, when multiplexing smaller LED devices, a 50 or 60 Hz multiplexing fre-
quency is sufficient and no flickering occurs. Not so with the very large digits here:
even a 75 Hz multiplexing showed some slight flickering (error #7). The concept
had to be changed to well above 100 Hz.

5. The DCF77 receiver module used showed two additional errors. Firstly, at 2.7 V op-
erating voltage well within the specified range, switching the internal pull-up resis-
tor of the portpin on lead to a voltage range exceeding the high-low transition volt-
age of the input pin (error #8). The internal pull-up of 47k already exceeds the ca-
pability of the receiver module to drive an input pin. The error was corrected by
switching the pull-up off (do not use that when the DCF77 input pin is not attached,
spurious signals here can block the software from doing other purposes!

The second error is that this module is not producing clear DCF77 signals (error
#9). It's HF amplification is so small that already a slight maladjustment of the an-
tenna direction produces garbage at the input. And it is very prone to any small sig-
nals that are caught from switched power supplies in the near. And: I am only
80 km away from DCF77's antenna here in South Hesse. I would never again use
that module for any other application.

Nine errors, of which eight were not caused by me, are a little too much to have fun.

Page 3 of 36

2.1 The display part
This is one of the four display digits of the
watch. It consists of 28 10-mm LEDs, that
are connected four-by-four to yield seven
segments. All anodes of the seven seg-
ments are connected together and are con-
nected to one of the four anodes A1 to A4
on the 16-pin flat cable and female connec-
tor.

The cathodes a to g are interconnected with
all four digits and are also connected to the
flat cable and female connector.

Two LEDs in the middle form an additional
cathode connection called h. The anode of
the two can be attached to one of the four
anode lines. To which of the anode lines
those two are connected can be configured
in the source code.

The 16-pin connection is documented in the
schematic of the controller and driver.

2.2 Controller part

2.2.1 Selecting the AVR type

The AVR type results from the following hardware requirements:

1. The watch shall run without any DCF77 synchronization over a longer time without
having to be re-adjusted. Therefore either the controller or the timer/counter TC2
have to use the crystal pins.

2. In order to not have to consult the DCF77 and the two key inputs these have to ini-
tiate a PCINT when their logical level changes. So at least one PCINT is required.

3. The eight constant current switches driving the cathodes shall be in one port, the
four anode switches in another port to be easily accessible.

4. Measuring of the potentiometer and of the foto transistor voltage requires two ADC
channels.

5. For multiplexing the display an 8-bit-timer, for measuring the duration of DCF77
signals a 16-bit-timer are required.

Page 4 of 36

The software here delivers a small selection of AVR type groups. The ATmega48 and its
larger companions fulfill those requirements.

2.2.2 Selecting the clock frequency

Clocking of the ATmega48 is done with a crystal attached, by default of 4.096 MHz. Two
ceramic capacitors of 22 pF assist in starting the internal oscillator. The external crystal
fuse of the ATmega48 has to be activated to change from the internal RC oscillator to the
external crystal (see the fuse section), because otherwise the watch is by a factor of 1,024
too slow (35 seconds per day).

The reasons for selecting this xtal frequency are as follows (see the calculation sheet
"Timer" in the OpenOffice spreadsheet here):

1. The xtal shall be available in electronic shops.
2. The xtal frequency shall be dividable by 8 or 64 and by 256 without a decimal re-

mainder.
3. Division by 256 is required to allow the multiplex timing by an 8-bit timer and to al-

low preliminary switching the active period off by use of a compare register, that
writes zeros to the anode driver outputs (dimming function switch-off values be-
tween 0 and 255). If you use a different xtal frequency that requires CTC mode to
achieve a zero remainder (e.g. 2.0 or 4.0 MHz), has to move the switching function
to compare B and has to convert the compare values to fit to the CTC value by use
of multiplication.

4. If you select a prescaler value of 8, the smallest xtal frequency of 2.048 MHz yields
much too high multiplex frequencies (1,000 Hz), which increases power consump-
tion and HF noise. When selecting 64 as prescaler the MUX frequency would be too
low (31.25 Hz), producing strong flickering of the display. Dividing the clock fre-
quency by use of the CLKPR division avoids that.

4.096 MHz is a good selection, the MUX frequency is 125 Hz and optimized.

Page 5 of 36

file:///C:/Users/gerd/Documents/9_websites/gsc-da/html/avr-asm/avr_en/apps/largewatch_m48/largewatch_m48_calculations.ods
file:///C:/Users/gerd/Documents/9_websites/gsc-da/html/avr-asm/avr_en/overview/overview.html#selection

2.2.4 Schematic of the watch

This is the schematic of the controller and of all connected components. The spreadsheet
"Partslist" in the OpenOffice document here lists all necessary components and their cur-
rent prices.

2.2.5 Cathode drivers as constant current sources

Port D of the controller controls the eight cathodes of the display. The port pins drive, with
resistors of 1k to limit port pin current in case that the display is not attached, the base of
transistors BC547 (any NPN small signal can be used instead). The emitters are connected
to 100Ω resistors to ground. That produces constant currents of

I (mA) = (2.7 - 0.6) / 100 * 1000 = 21 mA

The port pin outputs are active high.

This is the reason for selecting 2.7 V as operating voltage of the controller. 5 V instead
would have produced emitter voltages of 4.4 V and the voltages of the four LEDs (4 *
3.18 V = 12.72 V and at least 0.2 V CE(saturated) for the anode driver transistor BD440
would have resulted in 17.3 V. The consequence would have been that a transformer of
2*15V would have been required (which is not available with the necessary power rating).
An alternative would have been to reduce the emitter voltage with two diodes down to
1.4 V. Because 16 of those diodes would have been necessary, the reduction of the operat-
ing voltage down to 2.7 V needed less components.

2.2.6 Anode driver

The four anodes are controlled by the lower half of port B. The three lower port bits are
coupled directly to the bases of BC547 NPN transistors, those are driven via the internal
pull-up resistors. The current from the pull-ups of 47k is enough to drive those transistors
via a hFE(min) of 150:

IC = (2,7V - 0,7V) / 47kΩ * hFEmin * 1000 = 6,4 mA

The NPN transistors, via resistors of 2k2, drive the base of the PNP anode driver transis-
tors BD440 (any small power transistor can be used). Already a hFE of 30 drives the an-
ode current of up to 200 mA.

Because the fourth anode bit is also needed for serving the ISP6 interface (MOSI), this
NPN transistor is attached with a 10k resistor, and the port bit is configured as output.

Page 6 of 36

file:///C:/Users/gerd/Documents/9_websites/gsc-da/html/avr-asm/avr_en/apps/largewatch_m48/largewatch_m48_calculations.ods

2.2.7 ISP6 programming interface

The port pins PB3 to PB5 serve the ISP6 interface, by which the flash memory can be pro-
grammed within the running system. If no power supply is attached during programming
the programming device has to supply 3.3 v. If the display is not connected, 5 V can also
be used to program the flash. Don't attach the LEDs when at 5 V, that would ruin some of
the LEDs.

2.2.8 Other peripheral components

Port C is connected to the other peripherals:

1. The potentiometer is connected to the PC0/ADC0 input. The voltage there is con-
verted to digital values, which in case the potentiometer is configured as dimming
source dims the LEDs. If the foto transistor is used the potentiometer input is only
used in case the time is re-adjusted.

2. On PC1/ADC1 a foto transistor for measuring background light is attached. This
controls the brightness of the LEDs if so configured.

3. A small green LED is attached to PC2. This can be used for prototyping (see here
for debugging options) or for any other use (not used by default).

4. On PC3 and PC4 resp. the following three pins of the 10-pin connector the two keys
are attached. Those are held high with the internal pull-ups and active low when a
key is closed (active low).

5. On PC5 a DCF77 receiver module can be attached. It is irrelevant if its signal is ac-
tive high or low, both work correct. By default, its pull-up is active, but can be de-
activated by a configuration setting. The module shall be able to work with 2.7 V
operating voltage.

2.3 Power supply
Th power supply has to have the
following properties:

1. It has to supply 16 V and
0.2 A, required for the
LEDs.

2. The controller needs 2.7 V
with a maximum current of
30 mA. The regulator has
to be compatible with the
25 V max voltage on the
electrolytical capacitor
(without LED load).

The schematic shows such a standard power supply with a 2*12V transformer and 2.8VA.
The two diodes are 1N4001 or equivalent.

This simulates the displayed power supply without any load attached, see Power-Supply-
Software here). The voltage on the cap stays well below 25 V. In practice the transformer
had 2*15V instead and increased coil resistances. When no load was attached, the voltage
rose above 25 V and had to be reduced by attaching a small yellow LED to below 25 V. Do
not trust delivered products, those might be different from what is written on them.

Page 7 of 36

http://www.gsc-elektronic.net/power_supply/power_supply_en.html
http://www.gsc-elektronic.net/power_supply/power_supply_en.html

The elevated no-load voltage of the real transformer also had the effect that this voltage,
when a 200 mA load was attached, broke completely down to 12.4 V only. By far too low
to drive four LEDs. Because the 200 mA only occur if all eight segments are on (and only
for a short mux cycle), it was sufficient to reduce the operating voltage of the controller
down to 2.7 V and so to reduce the resulting segment current. If your transformer safely
delivers 200 mA you can increase the operating voltage to 3.3 V, and to operate the watch
with currents of up to 27 mA per segment.

Normally one uses an integrated regulator for the purpose of supplying the controller. But
there are no integrated 2.7V regulators available that have a certified voltage. As the 3.3V
regulator had 4.04V instead, I decided to construct my own. I used a 3.3V zener diode
and an NPN to get rid of all problems.

This is the calculated voltage of the supply at 230 mA load, as designed. The 230 mA
would be the maximum if 3.3V operating voltage, 27 mA LED segment current, eight seg-
ments and the maximum consumption of the controller would occur.

Page 8 of 36

The voltage drops down to slightly below 16 V, with a ripple of 1.3 V, which is off-regulated
by the constant current transistors.

So far the theory. The real transformer did not follow this calculation at all (see above).

Page top Properties Hardware Mounting Software

3 Mounting the device

3.1 LED front plate
The 28 10mm LEDs per displayed digit are placed on a width of 170 mm onto a 680-by-
240mm plate of acrylic glass. Four LEDs each are interconnected to form one segment
(see drawing above). Each digit has seven segments.

For drilling the 112 holes, the four DINA4 prints of the digits (see the OpenOffice docu-
ment here) were cutted out and fixed on the acrylic plate. Drilling started with a 1.5mm
drill, enlarging the holes with 1 or 1.5mm larger drills. Drilling was done with a low speed
to avoid melting of the acrylic glass.

From 6mm on I used a trimming tool at fast speed, from the front and from behind.

When the holes were accessible with my drill press, a 10mm drill was used at high drill
speed and slow sink speed. The melting of the acrylic glass helped to avoid cracking.

Those holes that were not accessible, were widened with 7, 8 and 9mm drills. The last mm
was taken with a sharp knife to avoid cracking.

The pages 2 and 3 of the print also include the two LEDs in the middle. Those are drilled
similarly, and wiring the anode goes with one of the four other digits. The placement of
the anode has to be configured in the source code.

Page 9 of 36

http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48_display.odg

For protection and for up-
right standing the watch a
second acrylic glass plate
of the same size is
mounted on the backside
with six 50mm spacers.
This plate also holds all
PCBs and attached com-
ponents.

3.2 Controller part
These are the compo-
nents of the controller
part on a 50-by-50mm
PCB. All external compo-
nents are connected with
plugs, so one can plug-off
the controller part in the
finally mounted device.

3.3 Power supply
part
The power supply is also
built on a 50-by-50mm
PCB.

Page 10 of 36

Page top Properties Hardware Mounting Software

4 Software

4.1 Downloads
The source code in assembler can be downloaded here and can be viewed in the
attachment.

The following documents are additionally available in OpenOffice format:

1. spreadsheets with all calculations (Timer, led currents, measured led voltages, etc.,
are in this document,

2. the eelectrical schematics of the controller and the power supply are in this
document,

3. the layouts of the controller and the power supply PCB are in this document (no, I
don't have made a printed layout design),

4. the four pages of the 7-segment layout of the front plate are in this document.

4.2 Assembling the source code
To assemble use the above link to the asm source to download the asm file. Please check,
by opening the asm code with a simple editor (NOT a word processing program, please,
this will destroy the simple text and add various formatting information, which makes it
unreadable for the assembler), that no debugging switches are activated (see below).

For assembling you'll need an assembler that is capable to understand .IF directives. AT-
MEL's assembler 2 is able to understand. For those who do not want to download 900 MB
monster software (the Studio) and don't want to install that, or for those who do not run
one of the Windows operating systems, my own assembler gavrasm is simpler and better.
A How-To for Windows here and for Linux here demonstrates how to do that. Those who
run a different operating system (32
bit Win, Mac-OS, etc.) can download
the source code of gavrasm and
compile it with the Free Pascal com-
piler for that operating system.

The assembled machine code as In-
tel-Hex-File .hex should be found in
the folder where the source code re-
sides.

4.3 Flashing, fuses
The hex code has to be written to
the flash memory of the ATmega48.
For that you need a hardware burner
and the software for that. Program-
ming can be done via the ISP6 inter-
face plug on the controller PCB.

Prior or after flashing the fuses of
the ATmega48 have to be changed
to use the external crystal as clock
source. Also clear the CLKDIV8 and

Page 11 of 36

http://www.avr-asm-tutorial.net/avr_en/how-to/assemble_lin/assemble_lin.html
http://www.avr-asm-tutorial.net/avr_en/how-to/assemble_win/assemble_win.html
http://www.avr-asm-tutorial.net/gavrasm/index_de.html
http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48_display.odg
http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48_design.odg
http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48_schematics.odg
http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48_calculations.ods
http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48_v1.asm

the CKOUT fuses and switch off the brown-out-detection BOD. In practice, allowing brown-
out-detection at 1.7V blocked all activities of the controller at 2.7V operating voltage, so
do not use this useless feature.

By use of a debugging function in the source code you can check if the controller works
correct (let the small green LED blink), see the debugging options here).

4.4 Hardware diagnosis
The source code includes several functions that can assist in getting the hardware to func-
tion correct. Those are activated by changing the "No"s to "e;Yes"e; in the
source code, by re-assembling and burning the hex code to the ATmega48's flash. It does
not make much sense to set more than one debug option at a time as those excude each
other in most cases.

1. "Debug_ledgreen": Following power on the green LED should blink if the controller
works correct.
If the LED is off, the controller does not run correct and you'll have to search the
wiring error in the clock section. If the blink rhythm is too fast, your controller is on
an elevated clock frequency (check the crystal). If it runs too slow, also check your
connections.
If the green LED is permanently on: your ATmega48 is dead. That happened in my
prototype, and I still do not know why (no, I did not reverse the operating voltage,
and: yes: I tried High Voltage/ Parallel Programming in an STK500 to recover the
chip - even that did not work). A matter for the dust-bin and final disposal in the
controller-heaven ...

2. "Debug_current": This option activates all eight cathode drivers, so you can connect
the cathode pins on X2 with an ampere meter to +16 or +20 Volt to measure the
constant current. That should show roughly 21 mA. If the LED display is attached to
X2 all seven segments of the ten-hour digit should be on.

3. "Debug_segments": That switches the seven (resp. eight) segments of all four dig-
its on (one by one, from a to h). The speed can be varied with the constant "cDe-
bug_segDelay". With 1 the change goes very fast, with 10 it is slower.

4. "Debug_mux8" This simulates a multiplex cycle, with all seven resp. eight segments
on and switches from digit to digit. The mux frequency can be varied with changing
the constant "cDebug_muxfreq". At 62 Hz nearly no flickering can be seen, beyond
100 Hz the muxing cannot be seen any more.

5. "Debug_adc": The measuring results from the ADC, the MSB of the sum (between 0
and 255), is displayed in decimal format on the LEDs.

6. "Debug_keys": The input signals on the two key input pins are displayed on the
ten-hour (key 1) and on the one-hour (key 2) position. Displayed is a small i (seg-
ment c of the display) for a high input pin or a small o for a low input pin.

7. "Debug_dcferr": All error signals on the DCF77 input are displayed. The ten-hours
digit shows a large E, the one-hours digit the error number. The following error
numbers mean:

0. or blank: No error
1. Signal shorter than required for a received 0
2. Signal shorter than required for a received 1
3. Signal shorter than required for a pause
4. Signal shorter than required for a missing 60th second
5. Signal longer than required for a missing 60th second
6. Following minute change not 59 bits received
7. Minute parity uneven
8. Hour parity uneven
9. No signal on the DCF77 input pin

Correct signal durations overwrite the error number with a blank, so that only error

Page 12 of 36

numbers can be seen.
If diverse different error numbers occur, the tolerance parameter in the constant
"cDcfTol" can be increased.

8. "Debug_dcfany": All correct signals are displayed (from right to left): received zeros
are displayed as small o, ones with a small i (segment c), pauses with a capital P.

9. "Debug_dcfdur": All signal durations are displayed in hexadecimal format on the
display (with the hexadecimal digits 0 to 9 and A, b, C, d, E, F.).

4.5 Constants to be adjusted in the software
Within the section "Adjustable constants" of the source code diverse adjustments can be
made that change properties of the watch. All constants in this section can be changed
without risking malfunctions.

1. .equ xtal = 4096000 ; in Hz
If a different crystal is used, you can adjust its frequency here. The frequency has
to be dividable by 4096 or 8192 without a decimal remainder, otherwise clocking of
the watch will be inaccurate. Use the OpenOffice spreadsheet Timer in the docu-
ment here to perform those calculations.

2. .equ cClkpr = 4 ; Either two or four
With that the clock prescaler is re-adjusted. It can be either 2, 4 or 8. Use the
spreadsheet to study the effect.

3. .equ cStartHours = 0x09 ; Start at 20:00 h
.equ cStartMinutes = 0x59
This adjusts the time that the watch starts with during power-up. Values have to be
in packed BCD format.

4. .equ cDcfOnly = Yes ; Display/Clear unsynced time
Switches the leds off, as long as no DCF synchronization took place yet.

5. .equ tDcf0 = 100 ; 100 ms for a 0
.equ tDcf1 = 200 ; 200 ms for a 1
.equ tDcfP = 850 ; Pause for 0 and 1 to next second
.equ tDcfM = 1850 ; Pause for 59th second pulse
.equ tDcfT = 3000 ; Time-out of DCF signal
These parameters adjust the duration of DCF77 signals in Milliseconds. If your mod-
ule has different durations, you can adjust those in the personalized section.

6. .equ cDcfTol = 10 ; Tolerance in %
The unavoidable tolerances of the durations of DCF77 signals can be adjusted here.
If your signal durations have a larger variance, increase that constant to 15 or 20.
If overlapping occurs, you'll be notified by an error message.

7. .equ cAnDp = 3 ; Should be between 1 and 4
This adjusts to which anode the double point in the middle is connected. If false,
the blinking does not occur.

8. .equ tBounce = 50 ; Bouncing time, in ms
This adjusts the time that the keys have to be inactive until negative pulses on
those inputs are leading to an active effect. If your keys bounce longer than this,
increase that value.

9. .equ cDimOpto = No ; Select the source

This parameter selects whether the foto transistor (Yes) or the potentiometer (No)
adjusts the dimming of the display.

Any changes come into effect following re-assembling and the transfer of the hex code to
the flash.

Page 13 of 36

file:///C:/Users/gerd/Documents/9_websites/gsc-da/html/avr-asm/avr_en/apps/largewatch_m48/largewatch_m48_calculations.ods

4.6 How the software works
The following chapters elaborate on the basic functioning of the software.

4.6.1 Timing control

The whole timing control is made with the timer/counter TC0. The following relationships
play a role:

1. Frequency of the oscillator with external crystal = 4,096 MHz,
2. Clock prescaler by 4 with CLKPR, controller clock = 1,024 MHz,
3. TC0 prescaler by 8, TC0 clock = 128 kHz,
4. Fast PWM mode mit TOP=255, TC0-Overflow-Int = 500 Hz.

Within the overflow interrupt the following tasks are performed:

1. output of the next left digit of the watch and activation of the next left anode driver,
readjustment for the next mux stage,

2. down counting of the half-second divider by one, if zero: setting the half-second
flag and down counting of the minute divider (from 120 down to zero), if that
reaches zero: setting the minute flag,

3. if the toggle counter of the keys is not at zero: if one or both keys are pressed
restart the toggle period, if none is pressed down counting of the toggle counter.

Additionally TC0 is used to dim the display. This is done when the compare value A is
reached and, in its interrupt service routine, writes zero to the anode driver output port.

Because the compare value A changes rather often (every time the ADC reaches 64 con-
versions) it had to be taken care to not miss compare matches due to setting a smaller
value while already at a higher count. Therefore the TC0 works in Fast PWM mode and not
as normal counter. In PWM mode the update of the compare value is delayed until the cur-
rent PWM cycle has ended. This works fine, but not with extremely small compare A val-
ues of less than 2. In that case flickering of single digits occurs, and I don't understand
why. As this only occurs at extremely low dimming, I can live with that.

4.6.2 AD conversion as additional clock source

The AD converter works with a clock prescaler of 128 and converts either the analog volt-
age on the potentiometer (on ADC0) or on the collector of the foto transistor (ADC1). If
time setting is active (key 1 has been pressed and time setting is still active), in any case
ADC0 is measured.

Within the interrupt service routine of the ADc the results of 64 consecutive measure-
ments are summed up and the conversion is restarted. If those 64 measurements are
completed, restart is omitted, the MSB of this sum is copied and the bAdc flag is set. Fur-
ther processing is performed outside the service routine.

Outside the service routine the flag is cleared, the channel is set depending from the cur-
rent mode, the sum is cleared, the counter restarts at 64 and the first conversion is start-
ed. If time-setting mode is inactive, the MSB of the sum is either directly written to the
compare A port of TC0 (potentiometer dimming) or is inversed (foto transistor dimming)
and then written to compare A.

If time-setting is active then see chapter 4.6.4 below.

The following frequency scheme of the AD conversion applies:

1. Controller clock: 1,024 MHz
2. AD clock prescaler: 128
3. Clocks per conversion: 13

Page 14 of 36

4. Number of conversions summed up: 64
5. Conversion frequency: 9.62 Hz
6. Conversion time: 104 ms

4.6.3 Multiplexing

The four bytes with the cathodes to be activated for the four digits are located in SRAM.
Those are output with a frequency of 500 Hz per digit during the TC0 overflow int. The
output direction is reversed (from A4 to A1) because the end of the cycle can be detected
in a simpler way (carry flag set after right-shifting the anode register).

Before the next byte combination is brought to the cathode output port, the anodes are
switched off. This was necessary to avoid flickering of the display.

4.6.4 Adjusting the time with the keys and the potentiometer

Adjusting the time starts when key a is closed for the first time. This is recognized via a
PCINT, where changes on the key input pins and on the DCF77 signal input pin are
masked to lead to an interrupt. The flag bKey1 is only activated if the input pin is low and
if the toggle counter is at zero.

The flag bKey1 activates the bKeyA flag that signals an active time setting phase. The ADC
is set to measure potentiometer voltages on ADC0. Incoming ADC result sums, if com-
plete, now are multiplied by 24, the result is converted from binary to packed BCD format
and the two digits are converted to 7-segment and written to the SRAM storage for dis-
play.

If the half-seconds divider is below 25% of its time, the two digits are blanked instead.
That results in a blinking of the two hour digits.

If the hours are set, another key pressing of key 1 results in setting the bKeym flag addi-
tionally. From now on multiplication is done with 60 and the 7-segment result is written to
the minute position in SRAM.

The third pressing of key 1 converts the hours and minutes that were adjusted to set the
hours and minutes of the watch. Additionally the half-seconds and the minute dividers are
restarted and eventual flags, that have been set in the meantime, are cleared. The bKeyM
and bKeyA flags are also cleared and the current time is displayed.

If the key 2 is pressed, while bKeyA is active, the setting of minutes returns to setting the
hours. If currently setting the hours is active while key 2 is pressed, the time-setting
mode is skipped and the original time (which continued to run during time-setting mode,
but was not displayed) is displayed.

If the time setting needs longer than the selected period of 10 minutes, the mode is also
cleared and returns back to the original time.

Each key pressing event restarts the toggle counter to prevent from any reactions to spu-
rious signals from the key inputs.

4.6.5 Adjusting the time with DCF77 signals

Each level change on the DCF77 input pin leads to a PCINT and a respective flag is set.

The flag leads to reading the current count from the 16-bit timer TC1. This timer advances
with a prescaler value of 1024 at 1 kHz (1 ms per count). Each input signal restarts the
TC1, so that each signal's duration can be assessed to find out what time information has
been received from DCF77.

A zero bit of DCF77 should be around 100 ms long. If the tolerance is set to 10% it can be

Page 15 of 36

between 90 and 110 ms long. With the TC1 clock the count shall be in that range for a
zero.

Each of the received signals has its specific range. A minute change has a duration of be-
tween 1800 and 1900 ms, depending if the last bit was a one or a zero. With 10% toler-
ance the counter value should be between 1850 - 185 = 1665 and 1850 + 185 = 2015. As
each level change causes an interrupt, the normal pause between the end of a bit and the
beginning of the next second's pulse should be between 800 and 900 ms long, but does
not require any further action.

From that the following algorithm results:

1. If the signal duration is shorter
than the table's first value, an er-
ror has occurred.

2. If the signal duration is longer or
equal the first value and shorter
than the second value, a zero, a
one, a pause or a minute change
is recognized and has to be han-
dled.

3. If the signal duration is equal or above the second value, the next value pair has to
be tried. If the last duration, a minute change, is exceeded an error happened.

Received zeros and ones are shifted with ROR into a bit buffer that is at least 40 bits long.
When shifted those signals have to be counted (to check if exactly 59 have been received
when the minute change signal occurs).

Second pauses are ignored.

If a minute change occurs,

1. it is checked whether exactly 59 data bits have been received,
2. the minutes are to be extracted from the bit stream, the respective parity has to be

checked (must be even) and has to be written to the minute storage,
3. the hours are extracted, their parity bit checked and written to the hour storage,
4. if both were correct: the time is set, the half-second and minute divider restarted

and pending flags are cleared.

These are the values of the table by default with a
tolerance of 10%. No overlapping occurs. As each
TC1 count is associated with 1,024 controller instruc-
tions, short delays in reading counter values are irrel-
evant.

Page top Properties Hardware Mounting Software

Praise, error reports, scolding and spam please via the comment page to me.

©2019 by http://www.avr-asm-tutorial.net

Page 16 of 36

http://www.avr-asm-tutorial.net/
http://www.avr-asm-tutorial.net/avr_en/comments/comments.html

Source code

Path: Home => AVR-EN => Applications => Large watch m48 => asm code

AVR applications

Large watch with
ATmega48
Assembler

software for the
large watch

Assembler source code for the large
ATmega48 watch
The original assembler source code is here.

;
; *********************************
; * Large watch with ATmega48 *
; * (C)2019 avr-asm-tutorial.net *
; *********************************
;
.nolist
.include "m48adef.inc" ; Define device ATmega48A
.list
;
; **********************************
; D E B U G S W I T C H E S
; **********************************
;
; Switches debug options on/off
; Make sure that all switches are off in the final version
;
.equ Yes = 1 ; For debug switches
.equ No = 0
;
; Debug the green led
.equ Debug_ledgreen = No ; Debug the green led only
;
; Debug the leds on start-up
.equ Debug_leds = No ; Debug the leds on start-up
;
; Debug the currents and blink the green led
.equ Debug_current = No ; Switch the current drivers on
;
; Debug the segments of the display
.equ Debug_segments = No ; Switch the segments on
 ; 1 = 9 seconds for all four digits
 ; 10 = slow, 80 seconds for all four digits
 ; 100 = extremely slow, 25 seconds per digit
 .equ cDebug_segDelay = 100 ; Delay the active segment

Page 17 of 36

http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48_v1.asm
http://www.avr-asm-tutorial.net/avr_en/apps/largewatch_m48/largewatch_m48.html
http://www.avr-asm-tutorial.net/avr_en/apps/APPS.html
http://www.avr-asm-tutorial.net/avr_en/index.html
http://www.avr-asm-tutorial.net/index.html

;
; Debug the muxing
.equ Debug_mux8 = No ; Multiplex the four displays
 ; The mux frequency for all four digits once
 ; Must be between 4 and 10,000 Hz
 .equ cDebug_muxfreq = 150 ; MUX frequency in Hz
;
; Debug the ADC results
.equ Debug_adc = No ; Displays the ADC results
;
; Debug the two keys
.equ Debug_keys = No ; Displays the key status
;
; Debug errors in DCF signal reception
; Displays E and error number instead of hours
.equ Debug_dcferr = No ; Yes/No
.equ Debug_dcfany = No ; Displays any signals
.equ Debug_dcfdur = No ; Displays signal durations
;
; **********************************
; H A R D W A R E
; **********************************
;
; Device: ATmega48A, Package: 28-pin-PDIP-S
;
; __________
; 1 / |28
; Res o--|RESET PC5|--o DCF77-In
; a o--|PD0 PC4|--o Key1-In
; b o--|PD1 PC3|--o Key2-In
; c o--|PD2 PC2|--o Led green cathode
; d o--|PD3 PC1|--o Optosensor
; e o--|PD4 PC0|--o Pot
; +5V o--|VCC GND|--o 0V
; 0V o--|GND AREF|--o 100nF
; X1 o--|PB6 AVCC|--o +5V
; X2 o--|PB7 PB5|--o SCK
; f o--|PD5 PB4|--o MISO
; g o--|PD6 PB3|--o MOSI+A4
; h o--|PD7 PB2|--o A3
; A1 o--|PB0 PB1|--o A2
; 14|___________|15
;

; **********************************
; P O R T S A N D P I N S
; **********************************
;
.equ p7SegO = PORTD ; Seven-segment output port
.equ p7SegD = DDRD ; Seven-segment direction port
.equ pAnodeO = PORTB ; Anode driver output port
.equ pAnodeD = DDRB ; Anode driver direction port
.equ pLedGO = PORTC ; Green led output port
.equ pLedGD = DDRC ; Green led direction port
.equ pLedGI = PINC ; Green led input port
.equ bLedGO = PORTC2 ; Green led portbit output
.equ pDcfKeyO = PORTC ; DCF and key port output port
.equ pDcfKeyD = DDRC ; DCF and key direction port
.equ pDcfKeyI = PINC ; DCF&Key input port
.equ bDcfI = PINC5 ; DCF77 input pin
.equ bKey1I = PINC4 ; Key1 input portpin

Page 18 of 36

.equ bKey2I = PINC3 ; Key2 input portpin
;
; **********************************
; A D J U S T A B L E C O N S T
; **********************************
;
; Frequency of the external xtal
; has to be dividable by 2/4, 8 and 256 (=4096/8192)
; without any fractional remainder
.equ xtal = 4096000 ; in Hz
;
; Clock prescaler applied
.equ cClkDiv = 4 ; Either one, two, four or eight
;
; Start time setting of the clock
; Packed BCD format
.equ cStartHours = 0x20 ; Start at 20:00 h
.equ cStartMinutes = 0x00
;
; DCF time only (clear display as long as not synced with DCF77)
.equ cDcfOnly = No ; Display/Clear unsynced time
;
; DCF signal durations in ms
.equ dcfdur_personally = No ; No = set default durations
;
.if dcfdur_personally != Yes
 .equ tDcf0 = 100 ; 100 ms for a 0
 .equ tDcf1 = 200 ; 200 ms for a 1
 .equ tDcfP = 850 ; Pause for 0 and 1 to next second
 .equ tDcfM = 1850 ; Pause for 59th second pulse
 .equ tDcfT = 3000 ; Time-out of DCF signal
 ; DCF77 signal duration tolerance
 .equ cDcfTol = 15; Tolerance in %
 .else
 .equ tDcf0 = 80 ; for too short signals
 .equ tDcf1 = 190 ; 200 ms for a 1
 .equ tDcfP = 850 ; Pause for 0 and 1 to next second
 .equ tDcfM = 1850 ; Shorter period for 59th second pulse
 .equ tDcfT = 3000 ; Time-out of DCF signal
 ; DCF77 signal duration tolerance
 .equ cDcfTol = 25; Tolerance in %
 .endif
;
;
; DCF77 signal input pull-up resistor
.equ cDcfPullUp = No ; Yes or no
;
; The anode line to which the double point in the
; middle is attached to
.equ cAnDp = 3 ; Should be between 1 and 4
;
; Key bouncing period
.equ tBounce = 50 ; Bouncing time, in ms
;
; Skip input mode after inactive time
.equ cSkipInpMinutes = 10 ; Minutes until input has to be finished
;
; Select the dimming source
; 0: Selects the potentiometer
; 1: Selects the opto sensor
.equ cDimOpto = No ; Select the source

Page 19 of 36

;
; **********************************
; F I X & D E R I V. C O N S T
; **********************************
;
; Clock divider conversion
.if cClkDiv == 1
 .equ cClkPr = 0
 .else
 .if cClkDiv == 2
 .equ cClkPr = 1
 .else
 .if cClkDiv == 4
 .equ cClkPr = 2
 .else
 .if cClkDiv == 8
 .equ cClkPr = 3
 .else
 .error "cClkDiv has illegal value!"
 .endif
 .endif
 .endif
 .endif
;
; Clock frequency
.equ clock=xtal/cClkDiv ; Define clock frequency
;
; Half seconds and minute dividers
.equ cTc0Prsc = 8 ; TC0 prescaler
.equ cTc0Frq = clock / cTc0Prsc / 256 ; TC0 int frequency
.equ cSec2 = (cTc0Frq+1) / 2 ; Half second counter
.equ c75pcon = cSec2 / 4 ; Period over which the
 ; selected digits are displayed when input is
 ; active
 .if c75pcon>255
 .error "Off period too long, reduce c75pcon!"
 .endif
;
; DCF signal counts, with rounding
.equ cTc1Tick = (clock+512) / 1024 ; Timer TC1 tick in Hz, @4.096 MHz = 4000 Hz
.equ cDcf0Min = ((tDcf0-tDcf0*cDcfTol/100)*cTc1Tick+500)/1000 ; Count 0 minimum
.equ cDcf0Max = ((tDcf0+tDcf0*cDcfTol/100)*cTc1Tick+500)/1000+1 ; Count 0
maximum
.equ cDcf1Min = ((tDcf1-tDcf1*cDcfTol/100)*cTc1Tick+500)/1000 ; Count 1 minimum
.equ cDcf1Max = ((tDcf1+tDcf1*cDcfTol/100)*cTc1Tick+500)/1000+1 ; Count 1
minimum
.equ cDcfPMin = ((tDcfP-tDcfP*cDcfTol/100)*cTc1Tick+500)/1000 ; Count pause
minimum
.equ cDcfPMax = ((tDcfP+tDcfP*cDcfTol/100)*cTc1Tick+500)/1000+1 ; Count pause
maximum
.equ cDcfMMin = ((tDcfM-tDcfM*cDcfTol/100)*cTc1Tick+500)/1000 ; Count minute
minimum
.equ cDcfMMax = ((tDcfM+tDcfM*cDcfTol/100)*cTc1Tick+500)/1000+1 ; Count minute
maximum
.equ cDcfT = (tDcfT*cTc1Tick+500)/1000+1 ; Counter time out
.if cDcfT>65535
 .error "Clock frequency too high for DCF duration counting"
 .endif
.if (cDcf0Max>=cDcf1Min)||(cDcf1Max>=cDcfPMin)||(cDcfPMax>=cDcfMMin)
 .error "Overlapping DCF duration(s), reduce cDcfTol!"
 .endif

Page 20 of 36

;
.if cDcfPullUp == Yes
 .equ mDcfKeyO = (1<<PORTC5)|(1<<PORTC4)|(1<<PORTC3)
 .else
 .equ mDcfKeyO = (1<<PORTC4)|(1<<PORTC3)
 .endif
;
; Key bouncing constant
.equ cTc0Presc = 64 ; TC0 prescaler value
.equ cTc0Mux = clock / cTc0Presc / 256 ; MUX interrupt frequency
.equ cBounce = (tBounce*cTc0Mux+500)/1000 ; Bounce constant
;
; **********************************
; C L O C K S
; **********************************
;
; Default xtal frequency 4.096 MHz, CLKPR=4, effective clock=1.024 MHz
;
; TC0:
; Clocked with a prescaler of 8, clock tick = 128 kHz @ 1.024 MHz
; Fast PWM counting, TOP = 0xFF, overflow int = 500 Hz (2 ms) @ 1.024 MHz
; MUX-frequency = 500 / 4 = 125 Hz
; 16-Bit-Register downcount from 1,000, yields 2 Hz signal for blinking the
double dot
; If zero: Set bSec flag, register downcount from 120 to yield minute for
clock,
; If zero: Set bMin flag
; If rBounce not at zero:
; Both key inputs high: downcount rBounce, otherwise rBounce = cBounce
; Timer interrupt on overflow
; Compare match A: OCR0A interrupt (clears anode driver for dimming the LEDs)
; TC1:
; Counts the duration of DCF77 signals
; Clocked with a prescaler of 1,024 = 1 kHz (1.0 ms) @ 1.024 MHz
; Normal counting (cleared by PCINT on DCF signal input)
; Timer interrupt on compare match A: sets the bDcfTO flag
; ADC:
; Converts measurements on ADC0/ADC1 inputs
; Clock prescaler = 128
; N clock cycles per conversion = 13
; Conversion frequency = 615.38 Hz (1.625 ms) @ 1.024 MHz
; Sums up 64 ADC results = 104 ms @ 1.024 MHz
; If 64 adders complete: Set bAdc flag
; ca. 1 MUX cycle per update
; As the TC0 compare match update is done at the beginning
; of the next mux event (each 2 ms), no missing compare matches
; occur (no flickering)
;
; **********************************
; R E G I S T E R S
; **********************************
;
; used: R1:R0 for DCF signal duration and
 ; for hardw multiplication
.def rAdcCtr = R2 ; ADC sum counter
.def rAdcSumL = R3 ; ADC result sum, LSB
.def rAdcSumH = R4 ; dtp., MSB
.def rAdc = R5 ; ADC result MSB
.def rInput = R6 ; Input pins
.def rDcfBits = R7 ; Counter for DCF bits
.def rDcf3 = R8 ; DCF bits, byte 4

Page 21 of 36

.def rDcf4 = R9 ; DCF bits, byte 5

.def rDcf5 = R10 ; DCF bits, byte 6

.def rDcf6 = R11 ; DCF bits, byte 7

.def rDcf7 = R12 ; DCF bits, byte 8

.def rDcfErr = R13 ; DCF77 signal error

.def rMux = R14 ; Mux channel

.def rSreg = R15 ; Save status register

.def rmp = R16 ; Define multipurpose register

.def rimp = R17 ; Multipurpose inside ints

.def rFlag = R18 ; Flag register
 .equ bMin = 0 ; A minute is over
 .equ bSec2 = 1 ; A half second is over
 .equ bDcf = 2 ; Level change on DCF input
 .equ bDcfTO = 3 ; Time out Dcf input signal
 .equ bKey1 = 4 ; Key1 pressed
 .equ bKey2 = 5 ; Key2 pressed
 .equ bKeyA = 6 ; Key input active
 .equ bKeyM = 7 ; Minute key input active
.def rFlag2 = R19 ; Second flag register
 .equ bAdc = 0 ; An ADC result is available
.def rHours = R20 ; Hours time, packed BCD
.def rMinutes = R21 ; Minutes time, packed BCD
.def rBounce = R22 ; Debouncing key counter
.def rMin = R23 ; Minute counter
.def rSec2L = R24 ; 1/2 seconds counter, LSB
.def rSec2H = R25 ; dto., MSB
; used: R27:R26 = X as pointer
; used: R29:R28 = Y for MUX
; used: R31:R30 = Z for multiple purposes outside int
;
; **********************************
; S R A M
; **********************************
;
.dseg
.org SRAM_START
sMux:
.byte 4 ; 4 bytes for muxing the display
sMuxEnd:
;
sInpTime:
.byte 2 ; 2 bytes input time buffer
;
sSkipInp:
.byte 1 ; Skip input after inactive time
;
; If debug any DCF signals
sDcfPos:
.byte 1 ; Position of the next display (+1)
;
; **********************************
; C O D E
; **********************************
;
.cseg
.org 000000
;
; **********************************
; R E S E T & I N T - V E C T O R S
; **********************************
 rjmp Main ; Reset vector

Page 22 of 36

 reti ; INT0
 reti ; INT1
 reti ; PCI0
 rjmp Pci1Isr ; PCI1 for DCF and key input changes
 reti ; PCI2
 reti ; WDT
 reti ; OC2A
 reti ; OC2B
 reti ; OVF2
 reti ; ICP1
 rjmp Tc1CmpAIsr ; OC1A, Dcf77 time-out
 reti ; OC1B
 reti ; OVF1
 rjmp Tc0CmpAIsr ; OC0A: clear anode driver
 reti ; OC0B
 rjmp Tc0OvfIsr ; MUX and time
 reti ; SPI
 reti ; URXC
 reti ; UDRE
 reti ; UTXC
 rjmp AdcIsr ; ADCC, Conversion complete
 reti ; ERDY
 reti ; ACI
 reti ; TWI
 reti ; SPMR
;
; **********************************
; I N T - S E R V I C E R O U T .
; **********************************
;
; PCI1 Interrupt service routine
Pci1Isr:
 in rSreg,SREG ; Save SREG
 in rimp,pDcfKeyI ; Read DCF signal and keys
 eor rimp,rInput ; Compare with last input
 sbrc rimp,bDcfI ; DCF77 bit set?
 sbr rFlag,1<<bDcf ; Set DCF flag
Pci1Isr1:
 tst rBounce ; Check bouncing counter
 brne Pci1Isr3 ; Still bouncing, ignore
 ; rInput key bit was 1/0, now is 0/1: EOR bit is one
 sbrs rimp,bKey1I ; Key 1 input changed?
 rjmp Pci1Isr2 ; No, skip
 sbis pDcfKeyI,bKey1I ; Input is one?
 sbr rFlag,1<<bKey1 ; Set key 1 flag
Pci1Isr2:
 sbrs rimp,bKey2I ; Key 2 input changed?
 rjmp Pci1Isr3 ; No, skip
 sbis pDcfKeyI,bKey2I ; Input is one?
 sbr rFlag,1<<bKey2 ; Set key 2 flag
Pci1Isr3:
 in rInput,pDcfKeyI ; Read DCF signal and keys again
 out SREG,rSreg ; Restore SREG
 reti
;
; TC0 overflow interrupt service routine
Tc0OvfIsr:
 in rSreg,SREG ; Save SREG
 clr rimp ; Anodes off
 out pAnodeO,rimp
 ld rimp,-Y ; Read next mux byte

Page 23 of 36

 out p7SegO,rimp ; Cathodes out
 out pAnodeO,rMux ; Set anodes
 lsr rMux ; Next lower anode
 brcc Tc0OvfIsr1 ; Not at the end
 ldi rimp,0b00001000 ; Start with anode 4
 mov rMux,rimp ; in rMux
 ldi YH,High(sMuxEnd) ; Restart from the end
 ldi YL,Low(sMuxEnd)
Tc0OvfIsr1:
 tst rBounce ; Check if bouncing active
 breq Tc0OvfIsr4 ; No, skip
 sbis pDcfKeyI,bKey1I ; Key 1 not pressed?
 rjmp Tc0OvfIsr2 ; No, restart bouncing
 sbic pDcfKeyI,bKey2I ; Key 2 pressed?
 rjmp Tc0OvfIsr3 ; No, decrease bounce count
Tc0OvfIsr2:
 ldi rBounce,cBounce ; Restart bouncing
 rjmp Tc0OvfIsr4 ; Continue ISR
Tc0OvfIsr3:
 dec rBounce ; Down count rBounce
Tc0OvfIsr4:
 sbiw rSec2L,1 ; Decrease seconds divider
 brne Tc0OvfIsr5 ; Not zero, skip
 ldi rSec2H,High(cSec2) ; Restart seconds divider
 ldi rSec2L,Low(cSec2)
 sbr rFlag,1<<bSec2 ; Set half second flag
 dec rMin ; Decrease minute divider
 brne Tc0OvfIsr5 ; Not zero, skip
 ldi rMin,120 ; Restart minute counter divider
 sbr rFlag,1<<bMin ; Set minute flag
Tc0OvfIsr5:
 out SREG,rSreg ; Restore SREG
 reti
;
Tc1CmpAIsr:
 in rSreg,SREG ; Save SREG
 sbr rFlag,1<<bDcfTO ; Set DCF time-out flag
 out SREG,rSreg ; Restore SREG
 reti
;
; TC0 Compare A Interrupt service routine
Tc0CmpAIsr:
 ldi rimp,0 ; Clear anode driver
 out pAnodeO,rimp ; in anode port
 reti
;
; ADC conversion complete interrupt service routine
AdcIsr:
 in rSreg,SREG ; Save SREG
 lds rimp,ADCL ; Read LSB result
 add rAdcSumL,rimp ; Add to LSB sum
 lds rimp,ADCH ; Read MSB
 adc rAdcSumH,rimp ; Add this and carry to MSB sum
 dec rAdcCtr ; Decrease counter
 brne AdcIsr1 ; Not zero
 sbr rFlag2,1<<bAdc ; Set flag
 out SREG,rSreg ; Restore SREG
 reti
AdcIsr1:
 ldi rimp,(1<<ADEN)|(1<<ADSC)|(1<<ADIE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)
 sts ADCSRA,rimp ; Restart ADC

Page 24 of 36

 out SREG,rSreg ; Restore SREG
 reti
;
; **********************************
; M A I N P R O G R A M I N I T
; **********************************
;
Main:
 ; Init stack
 ldi rmp,High(RAMEND)
 out SPH,rmp ; Init MSB stack pointer
 ldi rmp,Low(RAMEND)
 out SPL,rmp ; Init LSB stack pointer
 ; Init clock prescaler
 ldi rmp,1<<CLKPCE ; Activate clock prescaler
 sts CLKPR,rmp ; in clock prescaler port
 ldi rmp,cClkPr ; Set new prescaler
 sts CLKPR,rmp ; in clock prescaler port
;
; ******************************
; H A R D W A R E D E B U G
; ******************************
;
; Debug hardware options
;
; Debug the current drivers
.if Debug_current == Yes
 ldi rmp,0xFF ; All driver pins as output
 out p7SegD,rmp ; in direction port
 out p7SegO,rmp ; and activated
 .endif
;
; Blink the green LED
.if (Debug_ledgreen == Yes)||(Debug_current == Yes)
 sbi pLedGD,bLedGO ; enable output
 Debug_ledgreen1:
 rcall ToggleGreen
 Debug_ledgreen2:
 sbiw ZL,1
 brne Debug_ledgreen2
 rjmp Debug_ledgreen1
 .endif
;
; Debug the segments
.if Debug_segments == Yes
 ; Hint: uses rHours as anode driver and
 ; rMinutes as cathode driver
 ldi rmp,1<<bLedGO ; Green led as output
 out pLedGD,rmp ; Set portpin direction
 rcall ToggleGreen ; Toggle the green led
 ldi rmp,0xFF ; All cathode pins as outputs
 out p7SegD,rmp ; in direction port
 clr rmp ; All cathodes off
 ldi rmp,0b00001000 ; Anode driver 4 as output
 out pAnodeD,rmp ; in direction port
 clr rmp ; Anode drivers off
 out pAnodeO,rmp ; in anode port
 Debug_seg1:
 ; Start with digit 1
 ldi rHours,0x01 ; Start with digit 1 anode
 Debug_seg2:

Page 25 of 36

 ldi rmp,0
 out pAnodeO,rmp
 ldi rMinutes,0x01 ; and with the first segment
 Debug_seg3:
 out p7SegO,rMinutes ; Activate the cathodes
 out pAnodeO,rHours ; and the anode
 ldi rmp,cDebug_segDelay ; Load segment delay counter
 Debug_seg4:
 sbiw ZL,1 ; down-count delay
 brne Debug_seg4 ; until zero
 dec rmp ; Repeat counter
 brne Debug_seg4 ; Additional delay
 lsl rMinutes ; next segment
 brcc Debug_seg3
 lsl rHours
 sbrs rHours,4 ; Bit 4 zero?
 rjmp Debug_seg2 ; No, next digit
 rjmp Debug_seg1 ; Restart with digit 1
 .endif
;
; Debug muxing
.if Debug_mux8 == Yes ; Multiplex the four displays
 ; Wait time for MUX frequency
 ; Delay of loop is N = 2 + 4 * (c-1) + 3
 ; c = (N-5) / 4 + 1
 ; c= (clock/fMux/4-5)/4+1
 .equ cDebug_muxdelay =(clock/cDebug_muxfreq/4-5)/4+1
 ; Hint: uses rHours as anode driver
 ldi rmp,1<<bLedGO ; Green led as output
 out pLedGD,rmp ; Set portpin direction
 rcall ToggleGreen ; Toggle the green led
 ldi rmp,0xFF ; All cathode pins as outputs
 out p7SegD,rmp ; in direction port
 ldi rmp,0xFF ; All cathodes on
 out p7SegO,rmp
 ldi rmp,0b00001000 ; Anode driver 4 as output
 out pAnodeD,rmp ; in direction port
 Debug_mux8a:
 ldi rHours,0x01 ; Anode driver 1 on
 Debug_mux8b:
 out pAnodeO,rHours
 ldi ZH,High(cDebug_muxdelay)
 ldi ZL,Low(cDebug_muxdelay)
 Debug_mux8c:
 sbiw ZL,1
 brne Debug_mux8c
 lsl rHours
 sbrs rHours,4
 rjmp Debug_mux8b
 rjmp Debug_mux8a
 .endif
;
; ********************************
; N O R M A L I N I T
; ********************************
;
 ; Init ports
 clr rmp ; Anodes off
 out pAnodeO,rmp ; in Anode port
 ldi rmp,0b00001000 ; Anode 4 as output pin
 out pAnodeD,rmp ; in anode port

Page 26 of 36

 clr rmp ; Outputs cathodes low
 out p7SegO,rmp ; to portpins
 ldi rmp,0xFF ; Port as output
 out p7SegD,rmp ; to direction port
 clr rmp ; DCF and key inputs off
 out pDcfKeyD,rmp ; in DCF and key inputs
 ldi rmp,mDcfKeyO ; Set pull-ups
 out pDcfKeyO,rmp ; in DCF and key pins
 ; Init TC0 for MUX
 ldi rmp,0x01 ; Start with very short dim period
 out OCR0A,rmp
 ldi rmp,(1<<WGM00)|(1<<WGM01) ; Fast PWM mode
 out TCCR0A,rmp
 ldi rmp,(1<<CS01) ; Prescaler=8
 out TCCR0B,rmp
 ldi rmp,(1<<TOIE0)|(1<<OCIE0A) ; Interrupt on overflow and compare A
 sts TIMSK0,rmp
 ; Init TC1
 ldi rmp,High(cDcfT) ; DCF time-out, MSB
 sts OCR1AH,rmp
 ldi rmp,Low(cDcfT) ; dto, LSB
 sts OCR1AL,rmp
 clr rmp ; CTC mode on compare A
 sts TCCR1A,rmp
 ldi rmp,(1<<CS10)|(1<<CS12)|(1<<WGM12) ; CTC on compare A, presc=1024
 sts TCCR1B,rmp
 ldi rmp,1<<OCIE1A ; Timer int mask for compare A
 sts TIMSK1,rmp ; to int mask port TC1
 ; Init ADC
 ldi rmp,64 ; Start ADC counter
 mov rAdcCtr,rmp ; ... with 64
 ldi rmp,(1<<REFS0) ; MUX to channel ADC0
 sts ADMUX,rmp ; Set channel selection
 ldi rmp,(1<<ADEN)|(1<<ADSC)|(1<<ADIE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)
 sts ADCSRA,rmp ; Restart ADC
 ; Init flags and other parameters
 clr rFlag
 ldi rSec2H,High(cSec2) ; Init second counter, MSB
 ldi rSec2L,Low(cSec2) ; dto., LSB
 ldi rMin,120 ; Init minute counter
 ldi rHours,cStartHours ; Set initial time, hours
 ldi rMinutes,cStartMinutes ; dto., minutes
 rcall SetTime ; Convert time to display mux
 ldi YH,High(sMuxEnd)
 ldi YL,Low(sMuxEnd)
 ldi rmp,0b00010000
 mov rMux,rmp
 ldi rmp,Low(sMuxEnd) ; DCF output position
 sts sDcfPos,rmp
 ; Init PCINT
 in rInput,pDcfKeyI ; Read inputs
 ldi rmp,(1<<PCINT13)|(1<<PCINT12)|(1<<PCINT11) ; The interrupt generators
 sts PCMSK1,rmp
 ldi rmp,1<<PCIE1 ; PCINT1 enable
 sts PCICR,rmp
 ; Sleep mode
 ldi rmp,1<<SE ; Sleep mode idle
 out SMCR,rmp ; in SMCR
 ; Enable interrupts
 sei ; Enable interrupts
;

Page 27 of 36

; **********************************
; P R O G R A M L O O P
; **********************************
;
Loop:
 sleep ; Go to sleep
 nop ; after wake-up
 sbrc rFlag,bDcfTo ; DCF77 time-out clear?
 rcall DcfTimeOut ; Yes, time out
 sbrc rFlag,bDcf ; DCF input level change clear?
 rcall Dcf ; Yes, analyze
 sbrc rFlag,bKey1 ; Key 1 pressed?
 rcall Key1 ; Yes, react
 sbrc rFlag,bKey2 ; Key 2 pressed?
 rcall Key2 ; Yes, react
 sbrc rFlag,bMin ; Minute flag clear?
 rcall Minute ; Set, go to minutes
 sbrc rFlag,bSec2 ; Second flag clear?
 rcall Second ; Set, go to seconds
 sbrc rFlag2,bAdc ; ADC flag clear?
 rcall AdcFlag ; Set, go to ADC conversion
 .if Debug_keys == Yes
 rcall KeyDisplay
 .endif
 rjmp loop ; Restart loop from the beginning
;
; **********************************
; F L A G R E A C T I O N S
; **********************************
;
; **********************************
; H A L F S E C O N D O V E R
; **********************************
;
; Half second over, blink double point
Second:
 cbr rFlag,1<<bSec2 ; Clear flag
 lds rmp,sMux+cAnDp-1 ; Read mux byte where double point is attached to
 sbrc rmp,7 ; Seventh bit clear?
 rjmp Second1
 ori rmp,0x80 ; Set seventh bit
 sts sMux+cAnDp-1,rmp ; Bit 7 high to mux
 ret
Second1:
 andi rmp,0x7F ; Clear seventh bit
 sts sMux+cAnDp-1,rmp ; Bit 7 low to mux
 ret
;
; **********************************
; M I N U T E O V E R
; **********************************
;
; A minute is over, increase time
Minute:
 cbr rFlag,1<<bMin ; Clear flag
 lds rmp,sSkipInp ; Read skip input time
 tst rmp ; At zero?
 breq Minute0
 dec rmp
 sts sSkipInp,rmp
 brne Minute0

Page 28 of 36

 cbr rFlag,(1<<bKeyA)|(1<<bKeyM) ; Clear input flags
Minute0:
 ldi rmp,0x07 ; Add 7 to BCD
 add rMinutes,rmp ; to minutes
 brhs Minute1 ; Half overflow
 ldi rmp,0x06 ; Subtract 6
 sub rMinutes,rmp ; from minutes
Minute1:
 cpi rMinutes,0x60 ; 60 minutes over?
 brcs SetTime ; Set the time
 clr rMinutes ; Restart at zero
 ldi rmp,0x07 ; Add 7 to BCD
 add rHours,rmp ; to hours
 brhs Minute2 ; Half overflow
 ldi rmp,0x06 ; Subtract 6
 sub rHours,rmp ; from hours
Minute2:
 cpi rHours,0x24 ; Next day?
 brcs SetTime ; No
 clr rHours ; Restart day
;
; **********************************
; D I S P L A Y T I M E
; **********************************
;
; Convert the hhmm time and display
SetTime:
 .if cDcfOnly == Yes
 ; Do not update time
 ret
 .endif
SetTime1:
 sbrc rFlag,bKeyA ; Is a key input active?
 ret ; Yes, skip time output
 ldi XH,High(sMux)
 ldi XL,Low(sMux)
 mov rmp,rHours ; Read hours
 rcall Convert2Seven
 mov rmp,rMinutes
 rjmp Convert2Seven
;
; *******************************
; D C F 7 7 S I G N A L S
; *******************************
;
; DCF77 Time-Out signal input
DcfTimeOut:
 cbr rFlag,1<<bDcfTo ; Clear flag
 .if cDcfOnly == Yes
 ldi rmp,0 ; Clear the MUX area
 sts sMux,rmp
 sts sMux+1,rmp
 sts sMux+2,rmp
 sts sMux+3,rmp
 .endif
 ret
;
; Active DCF signal
Dcf:
 cbr rFlag,1<<bDcf ; Clear flag
 lds XL,TCNT1L ; Read TC1 count, LSB first

Page 29 of 36

 lds XH,TCNT1H ; dto., MSB next
 tst XH ; Check MSB
 brne Dcf1 ; Larger than zero, fine
 cpi XL,4 ; Minimum is 1 ms
 brcc Dcf1 ; Ok
 ret ; Ignore pulse, too short!
Dcf1:
 .if Debug_dcfdur == Yes
 ; Display signal duration in hex
 mov R1,XH ; Copy duration to R1:R0
 mov R0,XL
 ldi XH,High(sMux) ; X to sMux
 ldi XL,Low(sMux)
 mov rmp,R1 ; MSB first
 rcall Convert2Seven ; Write first two nibbles
 mov rmp,R0 ; LSB next
 rcall Convert2Seven ; Write second two nibbles
 mov XL,R0 ; Copy duration to X again
 mov XH,R1
 .endif
 ldi rmp,0xFF ; Counter for compares
 clr rDcfErr ; Error counter
 ldi ZH,High(2*DcfDur) ; Point Z to value table
 ldi ZL,Low(2*DcfDur)
Dcf2:
 inc rDcfErr ; Next DCF error
 inc rmp ; Next count
 cpi rmp,5 ; Maximum correct count = 4
 brcc DcfErr9 ; Error 9 (Signal too long)
 lpm R0,Z+ ; Read LSB min from table
 cp XL,R0 ; Compare with LSB min
 lpm R0,Z+ ; Read MSB min from table
 cpc XH,R0 ; Compare with MSB min
 brcs DcfError ; Error, signal too short
 lpm R0,Z+ ; Read LSB max from table
 cp XL,R0 ; Compare with LSB min
 lpm R0,Z+ ; Read MSB max from table
 brcc Dcf2 ; Larger than max table value
 cpi rmp,2 ; Zero or one?
 brcc Dcf4 ; No
 ; Received a correct bit
 .if Debug_dcfAny == Yes
 push rmp
 lsr rmp
 ldi rmp,0b01011100
 brcc Dcf2a
 ldi rmp,0b00000100
 Dcf2a:
 rcall DcfReport
 pop rmp
 .endif
 lsr rmp ; Shift counter bit 0 to carry
 ror rDcf7 ; Roll carry into DCF bit buffer
 ror rDcf6
 ror rDcf5
 ror rDcf4
 ror rDcf3
 inc rDcfBits
 rjmp DcfErrClear
Dcf3:
 .if Debug_dcfAny == Yes

Page 30 of 36

 ldi rmp,0b01110011
 rcall DcfReport
 .endif
 rjmp DcfErrClear
Dcf4:
 cpi rmp,4
 brcs Dcf3 ; Pause, ignore
 ; Received a correct minute signal
 inc rDcfErr ; Next error
 ldi rmp,59 ; 59 bits received?
 cp rmp,rDcfBits ; Number of bits
 ldi rmp,0 ; Clear number of bits
 mov rDcfBits,rmp ; in counter register
 brne DcfError ; Next error
 inc rDcfErr ; DCF error 7
 lsr rDcf5 ; Shift Parity2 to carry
 ror rDcf4 ; and into Byte 5
 ror rDcf3 ; Minute 40s to byte 4
 lsr rDcf4 ; Shift hours right
 ror rDcf3 ; Shift parity1 to minutes
 mov rmp,rDcf4 ; Minutes to rmp
 rcall Parity ; Check parity in rmp
 brne DcfError ; Parity odd
 inc rDcfErr ; Next error
 mov rmp,rDcf3 ; Check parity minutes
 rcall Parity ; Check parity in rmp
 brne DcfError ; Parity odd
 ; All checks performed and errorfree
 mov rHours,rDcf4 ; Read hours
 andi rHours,0x3F ; Remove upper two bits
 mov rMinutes,rDcf3
 andi rMinutes,0x7F ; Isolate minutes
 rcall DcfErrClear
 rjmp SetTime1 ; Display time
;
; DCF signal errors
; 0: No error
; 1: Signal shorter than 0
; 2: Signal shorter than 1
; 3: Signal shorter than pause
; 4: Signal shorter than missing second
; 5: Signal longer than missing second
; 6: Not 59 seconds received
; 7: Minute parity is odd
; 8: Hour parity is odd
; 9: Time out of signal input
;
DcfErr9:
 ; Error 9: signal too long
 ldi rmp,9
 mov rDcfErr,rmp
DcfError:
.if Debug_dcferr==Yes
 ldi XH,High(sMux)
 ldi XL,Low(sMux)
 mov rmp,rDcfErr
 ori rmp,0xE0 ; Error sign
 rcall Convert2Seven
 clr rmp ; Clear the last two digits
 st X+,rmp
 st X+,rmp

Page 31 of 36

 .endif
 ret
;
; Clear the DCF error number
DcfErrClear:
 .if Debug_dcferr == Yes
 ldi rmp,0
 sts sMux+1,rmp
 .endif
 ret
;
; Display DCF report in rmp
.if Debug_dcfAny == Yes
 DcfReport:
 ldi XH,High(sMux)
 lds XL,sDcfPos
 st -X,rmp
 cpi XL,Low(sMux)
 brne DcfReport1
 ldi XL,Low(sMuxEnd)
 DcfReport1:
 sts sDcfPos,XL
 ret
 .endif
;
; Check parity of rmp
Parity:
 clr ZL ; ZL is bit counter
Parity1:
 lsr rmp
 brcc Parity2
 inc ZL ; Count
Parity2:
 brne Parity1
 andi ZL,1
 ret
;
; DCF77 signal durations
DcfDur:
.dw cDcf0Min,cDcf0Max
.dw cDcf1Min,cDcf1Max
.dw cDcfPMin,cDcfPMax
.dw cDcfMMin,cDcfMMax
DcfDurEnd:
;
; *******************************
; K E Y P R O C E S S I N G
; *******************************
;
; Key1 is pressed
Key1:
 cbr rFlag,1<<bKey1 ; Clear flag
 ldi rmp,0b10101010
 sts sMux,rmp
 ldi rBounce,cBounce ; Start bouncing period
 sbrc rFlag,bKeyA ; Key input inactive?
 rjmp Key1Active ; Yes, key flag is active
 sbr rFlag,1<<bKeyA ; Set key flag active
 ret
Key1Active:
 sbrc rFlag,bKeyM ; Minute flag clear?

Page 32 of 36

 rjmp Key1Minute ; No, go to minute
 sbr rFlag,1<<bKeyM ; Set M flag
 ldi rmp,24 ; Convert ADC to hours
 mul rmp,rAdc
 ldi XH,High(sInpTime) ; Point to hours input
 ldi XL,Low(sInpTime)
 rcall ToBcd ; Convert binary in rmp to packed BCD
 mov rmp,ZL ; Result to rmp
 ldi XH,High(sMux) ; Hours display
 ldi XL,Low(sMux)
 rjmp Convert2Seven ; Display the selected hours
;
Key1Minute:
 ldi rmp,60 ; Convert ADC to minutes
 mul rmp,rAdc
 ldi XH,High(sInpTime+1) ; Point X to minutes
 ldi XL,Low(sInpTime+1)
 rcall ToBcd ; Convert to BCD
 adiw XL,1 ; Point to behind minutes
 ld rMinutes,-X ; Result to minutes
 ld rHours,-X ; and hours
 ldi rSec2L,Low(cSec2) ; Restart half second divider
 ldi rSec2H,High(cSec2)
 ldi rMin,120 ; Restart minute counter
 cbr rFlag,(1<<bMin)|(1<<bSec2)|(1<<bKeyA)|(1<<bKeyM)
 rjmp SetTime ; Set the current time
;
; Key2 is pressed
Key2:
 cbr rFlag,1<<bKey2 ; Clear flag
 ldi rBounce,cBounce ; Start bouncing period
 sbrs rFlag,bKeyA ; Key input active?
 ret ; No, ignore key
 sbrc rFlag,bKeyM ; Minute active?
 rjmp Key2Minute ; Yes
 cbr rFlag,1<<bKeyA ; Stop input
 rjmp SetTime
;
Key2Minute:
 cbr rFlag,1<<bKeyM ; Return to hour input
 rjmp SetTime
;
; Convert the binary number in R1 to packed BCD in ZL
; and write result to the X location
ToBcd:
 ldi ZL,-0x10
 ldi rmp,10
ToBcd1:
 subi ZL,-0x10
 sub R1,rmp
 brcc ToBcd1
 add R1,rmp
 add ZL,R1 ; Add the ones
 st X,ZL ; Store packed BCD in SRAM
 ret
;
; Displays the keys
KeyDisplay:
 ldi rmp,0b01011100 ; Small 0
 sbic pDcfKeyI,bKey1I ; Key 1
 ldi rmp,0b00000100 ; Small 1

Page 33 of 36

 sts sMux,rmp
 ldi rmp,0b01011100 ; Small 0
 sbic pDcfKeyI,bKey2I ; Key 1
 ldi rmp,0b00000100 ; Small 1
 sts sMux+1,rmp
 ret
;
; **************************************
; A D C R E S U L T R E A D Y
; **************************************
;
AdcFlag:
 cbr rFlag2,1<<bAdc ; Clear ADC flag
 mov rAdc,rAdcSumH ; Copy MSB sum
 clr rAdcSumL ; Restart sum
 clr rAdcSumH
 ldi rmp,64 ; Restart counter
 mov rAdcCtr,rmp ; into rAdcCtr
.if cDimOpto == Yes
 ldi rmp,(1<<REFS0)|(1<<MUX0) ; Mux to channel ADC1
 sbrc rFlag,bKeyA ; Clock setting active?
 ldi rmp,(1<<REFS0) ; Yes, MUX to channel ADC0
 .else
 ldi rmp,(1<<REFS0) ; MUX to channel ADC0
 .endif
 sts ADMUX,rmp ; Set new channel selection
 ldi rmp,(1<<ADEN)|(1<<ADSC)|(1<<ADIE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)
 sts ADCSRA,rmp ; Restart ADC
.if Debug_Adc == Yes
 rjmp AdcOut ; Display the ADC result
 .endif
 sbrc rFlag,bKeyA ; Key input active?
 rjmp AdcFlag2 ; Update the current input digit
 .if cDimOpto == Yes
 com rAdc ; Invert result
 .endif
AdcFlag1:
 out OCR0A,rAdc ; Write result to compare port TC0
 ; for dimming
 ret
AdcFlag2:
 tst rSec2H ; MSB larger than 0?
 brne AdcFlag3 ; Yes, display number
 cpi rSec2L,c75pcon ; LSB smaller than 75%
 brcc AdcFlag3
 ; Switch the two digits off
 ldi XH,High(sMux) ; Point X to hours
 ldi XL,Low(sMux)
 sbrc rFlag,bKeyM ; Minute key clear?
 ldi XL,Low(sMux+2) ; No, point to minutes
 clr rmp ; Write zeroes to digit
 st X+,rmp
 st X,rmp
 ret
AdcFlag3:
 ; Key input is active, calculate digit
 ldi rmp,24 ; Multiply ADC result by 24
 sbrc rFlag,bKeyM ; Minute flag clear?
 ldi rmp,60 ; Multiply ADC result by 60
 mul rmp,rAdc ; Hardware multiplication
 ; Convert MSB result to packed BCD

Page 34 of 36

 ldi ZL,-0x10 ; Start with minus 10
 ldi rmp,10
AdcFlag4:
 subi ZL,-0x10 ; Add ten to result
 sub R1,rmp ; Subtract 10 from ADC MSB
 brcc AdcFlag4 ; If not carry continue subtracting
 add R1,rmp ; Undo last subtraction
 add ZL,R1 ; Add rest to result
 mov rmp,ZL
 ldi XH,High(sMux) ; Point X to hours
 ldi XL,Low(sMux)
 sbrc rFlag,bKeyM ; Minute key clear?
 ldi XL,Low(sMux+2) ; No, point to minutes
 rjmp Convert2Seven ; Convert to display
;
; Display the ADC results
AdcOut:
 ldi XH,High(sMux) ; Point X to sMux
 ldi XL,Low(sMux)
 ldi rmp,0b01110111 ; A sign
 st X+,rmp ; to hour tens
 mov R1,rAdc ; Move the rAdc to R1
 ldi rmp,100 ; Hundreds
 rcall AdcOutDec ; Count hundreds
 ldi rmp,10
 rcall AdcOutDec
 mov R0,R1 ; Display the rest
 rjmp AdcOutDec2
;
; Convert R1 to a decimal and display
; rmp is the decimal (100, 10)
; Uses R0
AdcOutDec:
 clr R0
 dec R0
AdcOutDec1:
 inc R0
 sub R1,rmp
 brcc AdcOutDec1
 add R1,rmp
; Convert R0 to 7segment and display
AdcOutDec2:
 ldi ZH,High(2*SevenSeg)
 ldi ZL,Low(2*SevenSeg)
 add ZL,R0
 ldi rmp,0
 adc ZH,rmp
 lpm rmp,Z
 st X+,rmp
 ret
;
; **************************************
; B A S I C S U B R O U T I N E S
; **************************************
;
; Toggles the green led
; by outputting on the in port
ToggleGreen:
 ldi rmp,1<<bLedGO ; The green led
 out pLedGI,rmp ; Toggle the led
 ret

Page 35 of 36

;
; Convert rmp to 7segment and write result to X
Convert2Seven:
 push rmp ; Save for LSB
 swap rmp
 rcall Convert2SevenDigit
 pop rmp
Convert2SevenDigit:
 andi rmp,0x0F
 ldi ZH,High(2*SevenSeg) ; Load table, MSB
 ldi ZL,Low(2*SevenSeg) ; dto., LSB
 add ZL,rmp ; Add number, LSB
 ldi rmp,0 ; Zero
 adc ZH,rmp ; Add carry
 lpm rmp,Z ; Read from flash
 st X+,rmp
 ret
;
; Seven-segment table
; ---- a hgfedcba
; f | | b
; -g--
; e | | c
; ---- d
;
SevenSeg:
.db 0b00111111,0b00000110 ; 0+1
.db 0b01011011,0b01001111 ; 2+3
.db 0b01100110,0b01101101 ; 4+5
.db 0b01111101,0b00000111 ; 6+7
.db 0b01111111,0b01101111 ; 8+9
.db 0b01110111,0b01111100 ; 10(A)+11(b)
.db 0b00111001,0b01011110 ; 12(C)+13(d)
.db 0b01111001,0b01110001 ; 14(E)+15(F)
;
; End of source code
; Copyright
.db "(C)2019 by avr-asm-tutorial.net "
.db "C(2)10 9yba rva-mst-turoai.lrn t"
;

Praise, error reports, scolding and spam please via the comment page to me.

©2019 by http://www.avr-asm-tutorial.net

Page 36 of 36

http://www.avr-asm-tutorial.net/
http://www.avr-asm-tutorial.net/avr_en/comments/comments.html

	Large watch with ATmega48
	1 Properties
	2 Hardware
	2.0 Preliminary remarks
	2.1 The display part
	2.2 Controller part
	2.2.1 Selecting the AVR type
	2.2.2 Selecting the clock frequency
	2.2.4 Schematic of the watch
	2.2.5 Cathode drivers as constant current sources
	2.2.6 Anode driver
	2.2.7 ISP6 programming interface
	2.2.8 Other peripheral components

	2.3 Power supply

	3 Mounting the device
	3.1 LED front plate
	3.2 Controller part
	3.3 Power supply part

	4 Software
	4.1 Downloads
	4.2 Assembling the source code
	4.3 Flashing, fuses
	4.4 Hardware diagnosis
	4.5 Constants to be adjusted in the software
	4.6 How the software works
	4.6.1 Timing control
	4.6.2 AD conversion as additional clock source
	4.6.3 Multiplexing
	4.6.4 Adjusting the time with the keys and the potentiometer
	4.6.5 Adjusting the time with DCF77 signals

	Assembler source code for the large ATmega48 watch

